
              CIRCUIT CELLAR®                                                                                               Issue 123   October 2000       1www.circuitcellar.com

Navigating with GPS

FEATURE
ARTICLE

g
If you’re going to be
heading out with a
minivan full of little
ghosts and goblins
this Halloween, you
may want to brush up
on some GPS naviga-
tion background info.
Luckily, Jeff has all
the details that you’ll
need to find your way.

lobal Position-
ing System (GPS)

receivers are abun-
dant and cheap, paving

the way for anyone to write a simple
yet powerful navigation program. All
you need is a C compiler, a laptop or
small computer, and a couple naviga-
tion formulae. Seems simple? It is if
you know what data to use, what con-
versions to make, and which formulae
to use. This article reveals the twists
and turns required to put your GPS
receiver to work and get you navigat-
ing quickly. The application program
and functions I’ll present allow you to
calculate the distance and heading
from your current position to any
other position on earth. The distance
and bearing functions provide the
heart of a dynamic and useful naviga-
tion system.

GPS FUNDAMENTALS
GPS became available in 1978 with

the successful launch of NAVSTAR 1.
NAVSTAR 1 was the first of four
NAVSTAR satellites launched that

year, creating an operational satellite
navigation system for the military.
Then in 1982, Russia launched a sys-
tem called GLONASS.

GPS satellites are incredible instru-
ments. Each satellite contains four
atomic clocks that operate on a level
of one second of error in three million
years. This degree of precision time
keeping is required so each satellite
can operate autonomously yet remain
synchronized. GPS satellites transmit
ranging codes based on a signal’s time
of arrival, not position and motion.

These satellites, which are at known
locations at all times, transmit on two
L-band carrier signals. The satellite’s
receiver marks the difference between
the time the signal was sent and re-
ceived, and multiplies the difference
by the signal speed (close to the speed
of light). Using ranging code from four
satellites, a GPS receiver can calculate
its own position in three-dimensional
space, including the receiver’s velocity.

The NAVSTAR system breaks
down navigation into two domains,
Standard Positioning Service (SPS) and
Precise Positioning Service (PPS). PPS
accuracy is published at 21-m horizon-
tally and 29-m vertically. The early
NAVSTAR SPS was so accurate that it
was considered a threat, so the gap
between SPS and PPS was intention-
ally widened. The accuracy level of the
SPS was decreased to 100 m in the
horizontal plane and 160 m in the
vertical plane. The decrease, called
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Figure 1—Longitude lines run east and west from
pole to pole. Latitude lines run north and south,
parallel to the equator.

Longitude Longitude lines from 0˚
to 180˚ east and west of

Greenwich Royal Observatory.

Latitude
Latitude runs from 0˚at 

the equator to 90˚at 
each pole.
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NMEA GPS messages. The most useful
one is the RMC message, which con-
tains all of the basic information re-
quired to build a navigation system.
RMC is listed as recommended mini-
mum specific GPS/transit data (see
Figure 3). Although I don’t know what
the “C” stands for in RMC, I know I
like the utilitarian nature of this mes-
sage. It contains time, status, position,
speed, course, and date.

Looking at the RMC message, the
first chunk of data encountered is
$GPRMC. As the NMEA sentence
describes, this is the talker and sen-
tence formatter. Universal Time Coor-
dinated UTC data follows the sentence
formatter; the time is given in hours,
minutes, seconds, and decimal seconds.
Next is the GPS status indicator (A),
which indicates whether or not the
incoming GPS data is valid. The V in
this field seems to indicate that the
data is valid, however, it means the
opposite. An A in this field means that
the data is indeed valid.

There are many reasons why a GPS

Table 1—These are
useful GPS NMEA
messages used for
navigation applica-
tions.

Listing 1—Here’s the structure that holds parsed RMC messages.

ters your application program at 4800
bps at 1-s intervals, period. The data
rate and burst time can’t be changed.
This is OK for most land- and sea-
based applications.

An NMEA sentence contains an
address field, data field, and checksum.
The address field is composed of a
sentence formatter and talker identi-
fier. The latter indicates where the
data comes from. For GPS, the talker
identifier is GP. Two useful GPS talker
identifiers are RMC and GGA. The
sentence formatter indicates the con-
tent of the data field.

NMEA messages are easy for a pro-
gram to parse because they are consis-
tent and well defined. The general
NMEA message format is:
$<Address>,<Data>*<Checksum><CR><LF>

The address field, <Address>, is
broken down as <talker><sentence_
formatter>. All fields are comma de-
limited except <Checksum>, which is
delimited by a star (see Figure 2).

Table 1 lists eight examples of

selective availability (SA), introduced
error into the satellite orbital data and
time transmissions.

SA made life more difficult for com-
mercial GPS-based navigation systems.
One hundred meters (roughly 300′) of
accuracy isn’t bad, but if you’re trying
to develop a precise hand-held or auto-
motive navigation system, more accu-
racy is needed. To the delight of the
navigation community, the U.S. gov-
ernment turned off SA on May 1, 2000.
Instead of 100 m, accuracy now is
within 10 to 30 m in the horizontal
plane and slightly more in the vertical
plane.

Now, the floodgate is open for new
and highly accurate GPS applications
based on latitude, longitude, and time.
GPS receivers turn up in everything
from wristwatches to locomotives.

Latitude and longitude are funda-
mentals of navigation. Sometimes it’s
difficult to remember which is which. I
use the mnemonic “it’s a long way
from the North Pole to the South
Pole.” Longitude lines run from the
North Pole to the South Pole and are
measured in half circles from the Royal
Greenwich Observatory in Greenwich,
UK. Longitude lines run from 0° to
180° east and 0° to 180° west (see Fig-
ure 1).

Latitude lines run in parallel from
the equator to the North and South
Poles. Latitude lines run from 0° at the
equator to 90° at the North and South
Poles. As the lines of latitude get closer
to the poles, they become smaller. This
presents a problem when trying to use
a two-dimensional distance formula, as
I’ll explain later.

GETTING THE DATA
Most GPS receivers output data in

NMEA-0183 format. NMEA stands for
the National Marine Electronics Asso-
ciation. The data is sent via RS-232 at
4800 bps, with most GPS receivers
providing a serial port that outputs
NMEA GPS messages at 1-s intervals.
NMEA messages are sent by talkers
(identified by a two-character ID string
with a “GP” prefix) and received by
listeners. The messages are one-way:
from talker to listener. Thus, an appli-
cation program’s control of the
receiver’s output is limited. Data en-
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RMC Contains recommended minimum specific GPS/transit data
ALM Provides GPS almanac information
GLL Provides latitude, longitude, and UTC (Universal Time

Coodinated) data
ZDA Contains UTC along with day, month, year, and local time
GGA Contains UTC, fix, and position data
GSA Provides GPS DOP and active satellite information
VTG Provides “track made good” and ground speed
ZDA Provides the current time and data
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receiver would output invalid data.
For example, the receiver might not
have acquired enough satellites for a
position fix yet, foliage or buildings
might block the GPS signals, or the
GPS almanac or ephemeris data could
be out of date. Invalid data output
from a receiver is almost always tem-
porary, and a V usually will become an
A within seconds or minutes.

The next two fields cover latitude
and determine whether the latitude is
in the Northern or Southern Hemi-
sphere. Following the latitude fields
are the corresponding longitude and
east/west indicators. The two fields
after that, speed (knots) over ground
and course (degrees) over ground, are
handy. Next is the date, and then the
magnetic variation (east or west).

The RMC message is available on
almost all receivers that output NMEA
messages. As stated, GPS receivers
supporting NMEA messages output
data at 1-s intervals at 4800 bps, so
processing data at 1200- to 1800-ms
intervals ensures enough time to fill up
a receiver buffer and transfer the data
to a holding buffer. The data in the
holding buffer can be parsed and
processed while new informa-
tion enters the receive buffer.

Listing 1 shows a C structure
into which you can deposit the
parsed RMC message data. The
[��������]�identify character
array lengths and are optional.
The structure contains the
proper data types to contain the
RMC data fields. You can create
similar structures for additional
NMEA messages that an applica-
tion needs.

After the GPS receiver depos-
its data in a buffer named
��%��)����[], the data is trans-
ferred to another buffer called
��%��*�+,���[]. The latter is
used to extract the RMC or

other NMEA messages of interest. To
extract the data, create a pointer and
have it point to ��%��)����[]. For
transferring data, you need to de-refer-
ence the pointer to ��%��-�*�+,���[].
This is illustrated in the C code frag-
ment in Listing 2.

When a message is in a buffer, the
talker and sentence formatter can be
identified and processed. This bit of
code collects a sequence of messages so
multiple messages can be processed.
This allows you to create custom
structures, spanning the data from
multiple messages. For example, a
structure can be created that holds
speed, course, latitude, longitude, the
number of satellites in view, and dilu-
tion of precision values.

WAYPOINT NAVIGATION
Waypoint navigation is based on

great circle navigation. Great circle
navigation is general and good for
planes, boats, and cars. Waypoint navi-
gation systems navigate via latitude
and longitude pairs. The navigation
computer accesses a list of latitude/
longitude pairs and calculates the dis-

tance and bearing from one
point to another. Informa-
tion presented is usually
the current distance and
bearing from your present
position to the next
waypoint. Often, a dynamic
directional pointer is dis-
played, which you follow

to the next waypoint.
Before navigating, the data from the

GPS receiver must be converted to a
form acceptable to the great circle
navigation algorithms (i.e., the distance
and bearing formulae). First and fore-
most, all of the data must be in radians.
This seems straightforward, but there’s
a complication. The latitude and longi-
tude data emitted by most receivers is
in a form that cannot be directly con-
verted to radians. So, an intermediate
latitude and longitude conversion
sequence must take place.

All NMEA data is emitted as ASCII
data. Latitude and longitude data re-
ceived from a GPS receiver in NMEA-
0183 format is in units ddmm.mmmm,
where dd equals degrees, mm equals
minutes, and .mmmm is decimal min-
utes. These units are not appropriate
for the distance and course calcula-
tions; they must be converted to de-
grees and decimal degrees, then to
radians.

The first step is converting the
latitude and longitude data from the
form ddmm.mmmm to dd.dddd. This
is a straightforward algorithm, but it

still takes a substantial amount
of code. To determine the
algorithm, first separate and
save dd from the incoming
latitude and longitude string.
Then, divide mm.mmmm by
60, resulting in an exponent of
zero and a new mantissa,
0.dddd. Third, add the saved
dd to the result, yielding
dd.dddd.

After you finish converting
both latitude and longitude,
radian conversion is possible.
The formula to convert from
dd.mmmm to radians is:

radians = dd.dddd
57.3

After performing the dis-

Table 2—Here are common navigation units and conversion factors.

Ddmm.mmmm to dd.dddd Separate and save dd from the incoming latitude and longitude
Divide mm.mmmm by 60, yielding 0.dddd
Add the saved dd to 0.dddd, yielding dd.dddd

dd.dddd  to radians Radians = dd.dddd/57.2957795
Radians to dd.dddd (degrees) Degrees = radians × 57.2957795
Radians to nautical miles (NM) NM = radians × 3437.7387
NM to statute (land) miles (MI) MI = NM × 1.150779
MI to feet (FT) FT = MI × 5280

Figure 4—The simple navigation system architecture is pictured here.
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Listing 2—This code transfers an NMEA message from a raw input queue to a message processing
buffer.
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tance and bearing calculations, the
data needs to be converted back to
dd.mm.mmmm. This is done by fol-
lowing the formula degrees = radians ×
57.2957795. To convert back to the
form ddmm.mmmm, save dd, multiply
.dddd by 60, and add the exponent to
the result, yielding mm.mmmm. Then
concatenate the saved dd, resulting in
ddmm.mmmm.

That takes care of the latitude and
longitude conversions. Now, you can
tackle the knots and nautical miles
(NM) conversions. All speed and dis-
tance data contained in NMEA mes-
sages is in terms of knots and nautical
miles. One NM corresponds to the
traversal of 1 s of arc. One knot is
1 NMph. So, if you’re traveling at five
knots (5 NMph), you’ll traverse 5 s of
arc in 1 h.

Now, convert knots to miles per
hour and nautical miles to statute
(land) miles (see Table 2). Remember
that the output of the navigation cal-
culations is in radians. The conversion
to nautical miles is NM = radians ×
3437.7387. Next, you can convert
nautical miles to land miles (MI) using
MI = NM × 1.150779. Converting from
land miles to feet (FT), the formula is
FT = MI × 5280.

NAVIGATION FORMULAS
Now that the units are all in line,

the latitude and longitude data points
can be run through the great circle
algorithms, yielding correct results.
The distance calculation is performed
first because the distance is a factor in
the bearing calculation. To compute
the great circle distance between two
pairs of latitudes and longitudes, use:

d = acos(sin(Lat1) × sin(Lat2) + cos(Lat1) ×
cos(Lat2) × cos(Lon1 – Lon2))

This formula accurately yields the
distance between two points on the
globe. Remember that the units are in
radians, so to convert from radians to
nautical miles, use the formula NM =
radians × 3437.7387. Then you can
convert to land miles or kilometers.
Some languages and programming
environments, such as Visual Basic, do
not support a direct ����9�: function.
Instead, you can use an ����9�: func-

tion coupled with the relation acos(x) =
atan(sqrt(1 – x2) / x). For calculating
distance, I use the sequence of tempo-
rary variables as follows:

t1 = sin(Lat1) × sin(Lat2);
t2 = cos(Lat1) × cos(Lat2);
t3 = cos(Lon1 – Lon2);
t4 = t2 × t3;
t5 = t1 + t4;

rad_dist = atan – t5

– t5 × t + 1
+ 2 × atan 1

This sequence works well. While
taking a few more steps than one
monolithic formula, intermediate
variables are exposed, allowing you to
debug the distance algorithm as it
progresses. And, this sequence works
with all programming languages. To
prove it, t1 through t5 can be consoli-
dated, but sometimes it’s good to see
what’s going on in a mathematical
algorithm at different steps.

Why not use the Pythagorean Theo-
rem (remember, d x2 + y2 ) to compute
the distance between two points? For
navigation, x would be the absolute
value of the difference of the latitudes,

and y would be the absolute value of
the difference of the longitudes. This is
true for the proximity of 300″ but
rapidly deteriorates beyond that.

Hence, the Pythagorean Theorem is
useful only in two-dimensional space.
You’re navigating in three-dimensional
space, so for short distances, the theo-
rem appears to work, but it fails for
long distances. So, although it’s an
easier formula touse, you can’t use it
for any significant distances.

Now that distance is calculated, the
next thing to do is calculate the bear-
ing from one point to another. Bearing
tells you which way to go. It is defined
as the angle measured horizontally
from north to the current direction of
travel. North can be true north or
magnetic north. Again, the great circle
distance (d) between two points must
be previously calculated. The classic
bearing formula is:

where d equals the great circle dis-
tance. The result (c) must be qualified
by testing whether or not sin(Lon2 –
Lon1) is negative. If negative, the true
course is determined by 360° – c. You

Figure 2—
This is the
NMEA
sentence
format.
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Figure 3—Here’s the NMEA RMC message format, followed by definitions.

RMC message
$GPRMC,nnmmss.ss,A,IIII.II,a,yyyy.yy,a,x.x,x.x,xxxxxx,x.x,a*hh<CR><LF>

$GPRMC Address field
hhmmss.ss UTC of position fix (hours, minutes, seconds, decimal seconds)
A GPS status: A means data is valid, V means data is invalid
Llll.ll Latitude
a North/south
yyyy.yy Longitude
a East/west
x.x Speed over ground in knots
x.x Course over ground, degrees true
xxxxxx Date: ddmmyy (day, month, year)
x.x Magnetic variation
a East/west
*hh<CR><LF> Checksum

will end up at the destination, but
you’ll be taking the long way around
the globe. Again, I like to break down
the algorithm into discrete steps using
temporary variables (see Listing 3).

To create a direction pointer, sub-
tract the current GPS heading of the
RMC message from the calculated
bearing. Add 360° if the result is nega-
tive, creating an angle value that
points from one waypoint to another.

Many different sources are available
to determine waypoints. Inexpensive
PC-based mapping programs provide
methods of converting map points to
latitude and longitude. Converting
from an address to a latitude and longi-
tude value is called geocoding. Con-
verting from latitude and longitude
values to an address is called reverse
geocoding. Using the algorithms pro-
vided here and a GPS receiver, you can
create your own waypoint-capturing
program. Simply provide some code
that will save the incoming RMC mes-
sage when you pass over a location.
The saved message contains the lati-
tude and longitude of the point passed
over. You can use a collection of these
values to create accurate maneuver
lists for roads, trails, rivers, and lakes.

Figure 4 illustrates the main compo-
nents of a simple navigation system.
Data is input from a GPS receiver
serially to an input buffer at 4800 bps,
8 data bits, 1 stop bit, and no parity.
The data is input periodically at 1-s
intervals. During the time between the

input data bursts (typically 200 to 800
ms), the input buffer data is transferred
to a parser buffer. The data in the
parser buffer is used as input to the
NMEA parser that separates the data
into different components—latitude,
speed, and so forth.

Data from the NMEA parser is
made available to the display and navi-
gation engines. The navigation engine
computes the distance, bearing, and
direction pointer, then gives the infor-
mation to the display engine for ren-
dering and display.

The companion program to this
article, navcalc.c, takes latitude and
longitude pairs from the command line
and computes the great circle distance
from the first latitude/longitude pair
to the last pair. The source and desti-
nation latitude and longitude values
supplied in the program text are for
southeastern Michigan. To create a

Listing 3—There’s no doubt this can be easily optimized, but the algorithm is broken up to be more
illustrative and instructional than optimal.
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dynamic navigation program based on
this code, use the latitude and longi-
tude received and parsed from a GPS
receiver as the source coordinates, and
continuously calculate the distance
and bearing to the destination coordi-
nates. Try different latitude/longitude
source and destination pairs in your
city and compare how well the output
values match reality.

PARTING COMMENTS
The C code provided supplies the

basic building blocks for a small, low-
cost yet significant navigation applica-
tion program. GPS receivers are
available on the ’Net for bargain base-
ment prices. Mapping programs that
provide latitude and longitude data are
widely available. The C code supplied
in the example program is portable, so
it runs on most processors that support
floating-point operations and trigo-
nometry functions.

Now you’re on your way to creating
your own navigation program. Being
lost will be a thing of the past! I
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